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A CRACK PROBLEM WITH FOUR DISTINCT HARMONIC FUNCTIONS

by

Mumtaz K. Kassir1 and George C. Sih2

ABSTRACT

The problem of an elastic solid containing a semi-infi-
nite plane crack subjected to concentrated shears parallel
to the edge of the crack is considered in this paper. A
closed form solution using four distinct harmonic functions
(none of which can be taken arbitrarily) is found to satisfy
the finite displacement and inverse square root stress singu-
larity at the edge of the crack. Explicit expressions in
terms of elementary functions are given for the distribution
of stress and displacement in the solid. These are obtained
by employing Fourier and Kontorovich-lLebedev integral trans-
forms and certain singular solutions of Laplace equations in
three dimensions. The variations of the intensity of the
local stress field along the crack border are shown graphical-
ly. The present analysis offers an example which is in con-
trast with the conclusion established in the literature that
one of the four Papkovich-Neuber functions in three-dimension-

al elasticity may be arbitrarily set to zero.
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2Professor of Mechanics and Director of the Institute of Frac-
ture and Solid Mechanics, Lehigh University, Bethlehem, Penn-
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INTRODUCTION

The general notion of the classical theory of elasticity
[1-3]* is that one of the four harmonic functions appearing
in the Papkovich-Neuber solution of the displacement equations
of equilibrium may be set to zero (or arbitrarily chosen)
without loss in completeness of the solution. A counter ex-
ample is provided in this paper on an unfinished problem ini-
tiated by Uflyand [4]. The problem, basically, is concerned
with determining the distribution of stress in a half-space
when its plane surface is subjected to mixed conditions sepa-

rated by an infinite rectilinear boundary.

The solution to the problem of concentrated normal and
shear forces applied to the surfaces of a semi-infinite plane
crack serves as the Green's function for a number of crack
problems of interest in fracture mechanics. A sketch of the
crack configuration is shown in Figure (1). In terms of the
coordinates indicated, the surfaces of the crack are defined
by 8 = #m, 0<r<eo, -w<z<w, Without affecting the generality
of the problem, the points of application of the loads may be
taken as r = a, 6 = ¥7, z = 0. Because of skew-symmetry, it
suffices to consider a half-space y>0 with mixed conditions
specified on the plane y = 0. It was Uflyand [4] who made

the first attempt to solve this problem by using only three

*Numbers in square brackets designate references at the end.
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harmonic functions in the space y>0 and the Kontorovich-
Lebedev integral transform in the variable r. The fourth
function in the classical Papkovich-Neuber representation of
the displacement field was arbitrarily neglected. This tech-
nique has failed to yield a solution for the case of two equal
and opposite force R directed parallel to the edge of the
crack [4, page 382].

The objective of this paper is two fold. First, the
Green's function for the three-dimensional crack problem is
constructed. Next, it is shown that the fourth Papkovich-
Neuber function contributes to the solution and is not zero.
Four distinct harmonic functions are required to satisfy the
finite displacement and the inverse square root of r condi-
tions as r>0. The state of displacement and stress throughout
the solid is determined in closed form in terms of elementary
functions. These are obtained by employing a Fourier trans-
form in the variable z, Kontorovich-Lebedev transform in r
and singular solutions of the Laplace equation in three dimen-
sions [5]. The stress-intensity factors due to the loading R
are determined explicitly and their variations along the crack

border are shown graphically.

BASIC EQUATIONS

The equilibrium of an isotropic and homogeneous solid is
governed by the Navier displacement equations which in the

absence of body forces and in vector notations appear as
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VRt iy TV.u = 0 (1)

where u is the displacement vector, V is the gradient operator
and v designates Poisson's ratio of the material. Denoting
the projections of the displacement in the directions of cy-
lindrical coordinates by (ur, Ug> uz), the Papkovich-Neuber

general representation of equations (1) gives the displacement

field
u, = 4(1-v)(f]cose + fzsine) - %; (2a)
Uy = 4(1-v)(f2cose - f1sine) - % 3% (2b)
u, = 4(1-v)f3 - %g (2¢)
in which the following abbreviation has been introduced
F=fy+ (rcose)f1 + (rsine)f2 +z2f, (3)

and fn(r,e,z), n=20,1,2,3, are space harmonic functions. The
corresponding stress field is readily obtained from equations
(2) and (3) and the usual stress-displacement relations in
linear elastostatics. In particular the stresses associated

with the 6-plane are found:



Oq af] ) sz
Fm = - (1-2v)(coss T + sino T
of of of
2(1-v) 2 s 1 3
+ (COSG 38 s1no ‘a—-e'—) + 2v 37
8%fy 3%y 4 32 f . A,
Yarr tapm - ¥ (coso gz * sine 357—)
32f 32f
3
+ z(ar23 822 ) (4a)
T of of
ré _ 3G , 2(1-v) 1 . 2
TR T - (cos® 55t sine 5= (4b)
T of
0z _ 36 2(1-v) °°3
el r 3 (4c)

In equations (4), n depicts the shear modulus of the solid and

the function G(r,0,z) is defined through the relation

1 Bfo Bf]
G = (]-ZV)(fZCOSG - f]sine) -7 '—e— - COSs T
>f af
. 2 z 3
- Sind 36 T 36 (5)

The remaining stress components 0,5 O, and T, are not needed
for the mere purpose of completing the analysis and will not

be mentioned.

THE PLANE CRACK PROBLEM

Consider the case of a pair of equal and opposite concen-
trated shear forces R applied to the surfaces of a plane as
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shown in Figure 1 (with P = Q = 0). For this problem, the
displacements and stresses are skew-symmetric with respect to

the variable z. Hence, u and t are odd in z while

0 re

u, and Ty, are even in the same variable. In addition, the

r» UYgs O
deformed solid also exhibits skew-symmetry in the coordinate

8, namely u_, u

r z? o

5 being odd in 8 and Ugs Tpgs Tg, €VEN in
8. The latter condition suggests that the problem can be

formulated for the upper half-space y>0 with appropriate con-
ditions prescribed on the planes 6 = 0 and 6 = mw. In observ-
ing these conditions, the continuity of the solid across the

plane 6 = 0 implies

ur(r,o,z) =0 (6a)
uz(r,o,z) =0 (6b)
04(r,0,z) = 0 (6¢)

On the upper surface of the crack 6 = w, the loading is de-

scribed by
Ty, (rsmsz) = 1,(r,z) (7a)
Tre(r,ﬂ,Z) =0 (7b)
de(r,ﬂ,z) = 0 (7¢)
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in which To(r,z) is a specified function describing the ap-
plied shear loading. Aside from the requirements given by

equations (6) and (7), the regularity conditions at infinity
must also be satisfied, i.e., the displacements and stresses

1 2

must behave as L ' and L~

when

L = (r2+22)]/2 >

Furthermore, near the crack boundary (r-»0), the displacements
must be finite and the stresses are expected to have the usual

square root singularity, p /2

Inserting relations (6) into equations (2a), (2c) and
(4a) and making use of (3), the functions f (n = 0,1,2,3)

can be determined from the following system of equations in

the region 6 = 0
(3-4v)f1 - ;;Q -r %;l -z ;;i =0 (8a)
(3-4\))1"‘3 - ;;Q -r ;;l -z E;E =0 (8b)
o Y 2L, L M 2
_ ]F;;l“ 2(223 + 2253) = 0 (8c)

Upon recognizing the identity



1 1. 1, r(82 + 3—2—~Z-)1" 8 =0 (9)
r 362 or arZ ' 3z 1°

equations (8) are satisfied by requiring

fo(rsoaz) =0 (103)
fi(r,0,z) = 0 (10b)
f3(Y’,O,Z) =0 (]OC)
8f,

55 (r,0,z) =0 (10d)

In a similar manner, conditions (7) when used in conjunction
with (4), give rise to the following relations for 6 = w,

i.e.,

57+ r 36 2y (11a)

af
3G 2(1-v) 71 _
or r 30 0 (17b)

of af of 32f 32%f
1 2(1-v) 2 3 0 0

(1-2v) ar r 56 2v 57 T 3rz t 372

1 3%y 52 52

TR T P2 A Sl (17¢c)

where G can be found from



_ 18, 3
Y 8 3]

0 3f1 8f3

G = -(1-2\))1’ 38’ 6 =7 (12)

~S|N

2

Further simplification may be achieved by setting
G =0, 6 =7 (13)

On account of equation (13), it follows that

26 G
FEa I B (14)
and as an immediate consequence, equations (11a) and (11b)

yield the crack-surface conditions

8f3 rTo(r,z)
ae - 4U(]-W, e =T (15)

3‘f‘--(
'l =0, 6 =1 (]6)

Equations (15) and (16) together with (10b) and (10c) provide

the necessary relations for the evaluation of f1 and f The

30
remaining functions fo and f2 are obtained from equations
(13), (15), (16) and the fact that the loading is applied at

the point r = a, z = a. This yields

)
55

I
o
"
D

I
3

(1-2v)f, - (17)
From equations (10a) and (10d), it is not difficult to verify

that
-9-



Bfo

? - -
5y [(1-2v)f, - =1 =0, 8 = 0 (18)

The mixed conditions (17) and (18) provide a relation between
the potentials f2 and g;g which is given in equation (30).
The next step in the analysis is to derive a second relation
between the same potentials. This may be accomplished by

using equations (11c) and (10). Utilizing the identities

3 - -3 Y3
or ax? r a8 oy
6 = 7 (19)
52 32 e
avZ g7z - ay?

equation (11c) can be transformed into

of of of 92 f 32 f
2 1 3 0 1
2(1-v) 3y (T-2v) 55—+ 2v 55~ - 3y ~ Qdyase
32f3
-ZW—'—'O,@:TT (20)
32f

3

ayaz)
*

(which vanishes in the region 6 = w) to both sides of equa-

At this point, it is expedient to add the term (y

tion (20). The resulting relation takes the form

*
The second derivative of f3 is assumed to be regular for

6 = w. This condition, incidently, is easily confirmed once
the potential f3 is known. Refer to equation (26).
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|om oo o0 o5 &8 o o0 O U8 B0 G5 G5 G U WS O G5 G5 6N

of af af af
9 0 1 3 3
Yy [2(1-v)f2 "3y " 38 Y3z T %ay
y 8f1 3f3
- (1-2v) | (";— + gg—)dYJ =0, 6 = (21)

The above Timits of integration have been introduced to ensure

boundedness at the infinitely distant points.

With reference to the region 6 = 0 and making use of some
elementary transformations analogous to those in equations
(19), equations (10) confirm that the relation (21) is also
valid in the region 6 = 0. This means that equation (21)
holds across the entire plane y = 0 of the half space y>0.
The expression inside the bracket in equation (21) is recog-

nized as a harmonic function. It follows from Green's formu-

la [6] that
af of of of
0 _ 1 3 _ 3
2(0-9)fp - 5y =55 * 25y " Y az
y af] 3f3
+ (]-2\)) c{) (5—)(—— + B—Z—)dy, yzO (22)

exists throughout the entire semi-infinite solid y>0. Equa-

tion (22) provides the second equation for finding f2 and fo.

METHOD OF SOLUTION

In this section the potentials appearing in the basic
displacement representation are determined by employing meth-

ods of integral transforms and singular (primitive) solutions
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of Laplace's equation [5].

The function f3(r,e,z) is governed by the mixed condi-
tions (10c) and (15). This calls for the application of a
Fourier cosine transform with respect to the variable z and
a Kontorovich-Lebedev transform  in r [4]. Seeking f3(r,e,z)

by the expression

1/

2@ inh(ot
f,o = (=) £ g d(s,t) %%%E%TF%T Kip(rs)cos(sz)dsdt (23)

3

E )

where Kit is the Macdonald function [7] and ¢(s,t) is an ar-
bitrary parameter such that equation (10c) is satisfied. By
introducing the appropriate inversions and accounting for the
concentrated load at (r = a, z = 0), ¢(s,t) is determined from

equation (15) as

Rtsinh(wt)Kit(rs)
(2ﬂ)1/2ﬂ22u(]-V)

¢(s,t) = - (24)
The result of putting equation (24) into (23) and employing

the integral representation [7] is

Kit(rs)Kit(as) = Z Ko(sg)cos(tn)dn

(25)
172

£ = (r2+2arcoshnta?

*See Appendix for brief outline of this transform.
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The integrals in equations (23) may now be evaluated to ren-

der
- R -1 (/2a(r-x)
f3(r,e,z) alll crrra ety v tan ( 5 ) (26)

where p represents the distance of any point in y>0 from the
point of application of R, i.e.,

p = [(x+a)? + y2 + 22]'/2

(27)
The evaluation of f](r,e,z) is dictated by the "homoge-
neous" conditions (10b) and (16) governed by the Laplace
equation in three dimensions. However, the choice f1 =0 is
inappropriate as it does not Tead to the correct solution
(see [4], pages 381-383). This, in fact, is the crucial
step in the present analysis and contradicts the general no-
tion in the open literature that one of the harmonic func-
tions contained in the Papkovich-Neuber solution can be
dropped. In order to arrive at the proper expression for fl’
a singular solution of Laplace equation which satisfies con-
ditions (10b) and (16) and gives rise to well-behaved dis-

placements at infinity is proposed [5]

. ©
S1n ?

fi(r,e,z) = ¢4 Im[g(z)] (28)

r
where Im designates the imaginary part of an analytic func-

tion of the variable z defined by
-13-




C=r+a+1'2,'i=/_-T (29)

and Cq is a constant introduced for convenience of writing

the ensuing development. Note that as r+0, the expression
(28) is undefined. On physical ground, however, the displace-
ments must be finite in that region. This condition will be

improved later on.

To find the other potentials fO and f2, equations (17)
and (18) suggest the following relation involving the special
solution introduced in (28), i.e.,

&)
Cos »
(1-29)f, - x% = & —2 In[g(c)] (30)

In equations (28) and (30) the function g(z) as well as the
constants <y and A are yet to be found. Solving equations

(22) and (30) simultaneously and utilizing equations (26) and

(28) yield
RVa 1 C“%
-
Y Sin >
* (1-2v) lw(x,y,z) - ¢ Imlg* (z)Idy} (31a)
w r
and
To | ((1-2vIRVE L 1, ) (3-4v) 2(1-v)Al} x
3y T Humi(T-v) 2 d viey - TV
% 2 nlee)] (1-29) " G (x,y,2) ?Si"%
x mlg(g)] + (1-2v) {y(x,y,z) - c x
/v LRV
x Imfg' (z)1dy} 44 (31b)




in which g'(z) = %E g(z) and the following notations have
been adopted:
Rlco]-2 yz -1 vV2a(r-x)
Y(x,y,z) = m{p tan (—p-——)
Yr+x+v2x-¢
- ()% 1z (2x-2) T2 an(—— 29T (32)

Integrating equation (31b) with respect to y between the

limits « and y and applying the results

| @

Y cos y
/ Im[g'(g)ldy = Lo 1 7 olt)dt
oo /YT ‘/? s ‘/t__q
y - -
i v(x,y,z)dy = yyp + ZEFT%TTGT {% tan~ | /2a;r X)
z. 1/2
- V7a Im[(Co)—]/ztan'](——Q—) 1} (33)

T-T,

n
—h
>

@

: 1 Y g(t)dt
In[g' (¢)1dy = —— 1m[7 9(t)dt
& miet{z)ldy z/?mofo/q

8
[a ¥
<

8 —=

y -
- 2y T g(t) gtz +2x) 1/ 24t ]

it is found that
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_ (1-2v)RVa -1/2
fo= - —""" Im[z
0 }/ZTUTTZ 0

tan™] (C-
1-v y g(t)dt
+ — [(1-2v)cy - Allm
- VIt i t-z,

2 / (
+ (1—2\)) [yw + W_%?T)—é- tan-.l (_ZLDY‘.:X_)_)

y d -1/2
+ — Im [ g(t)(t-z +2x)
/? o{ dt (o]

dt] (34)

The remaining boundary condition to be satisfied is equation

(10a). Imposing this condition on equation (34) results in

e -0 S R
0 0

which is a standard integral equation of the Abel type [8] and

thus the function g(z) is readily determined as

9(z) = 1 (36)
provided that
_ (1-2v)RvVa
(1-2\))C] - A= - mz' (37)

The expressions for the potentials fo and f2 can be simplified

further by defining a constant C, via the relation

€2 = 2uw¥?{?v§ + (1-v)ey (38)

-16-




Upon substituting equations (36-38) into (31a) and (34) the

following expressions are derived

2
fO(Y‘,e,Z) = (1-2\)) [R?Z—R(%—-m tan"] X
1/2 8
2(ar) sins P e~
x 5 ) + ypl + — -(—C—_m
_ Yr+x+v/2x-¢
+ (2x-2,) 732 gn( —] (39)
and
cos % 1
falr6,2) = cp —= In() + (1-20) T (x,y,2)
- gl— Im[ /rx (2x- )_3/2 X
m z{(2x- o ) Co
/F?Y+/YTZ;
X 2n(——~—g———*—)]} (40)

where ¢y is defined in equation (32). The final step in the
analysis is to obtain another expression relating Cq and Co-
This may be done by imposing the regularity condition on the
displacements as r+0. Inserting equations (26), (28), (39)
and (40) in (2) and (3) and carrying out the expansion for
small r, making use of (38) and retaining the lowest-order

terms, it is found that the displacements near the crack edge

become

-17-




.. B
c1+C2 Zs1n Pl

= 0
Up = - s e atez? [3-4v + (7-8v)cos8] + 0(r") (41a)
Citc, zcos % .
ug = , o atrz? [3-4v - (5-8v)coss] + 0(r"”) (41b)
u; = 0(r?) (41c¢)

The finite displacements requirement at the crack edge gives
cp tc,=0 (42)

It follows from equation (38) that

- - VRY/a
‘177 % 7 T T (2y) (43)

and the solution is complete. The physical quantities of in-
terest may be readily computed from equations (2) - (5) when
the appropriate expressions for the harmonic functions in equa-

tions (26), (28), (39), (40) and (43) are used.

STRESSES NEAR CRACK EDGE

The shear stresses across the surface 6 = 0 are computed

from equations (4b) and (4c) as

_ 4vRVa z(x+a)

Tre(rsosz) - T ']TZ(Z'\)) (X)]/Z[(X+a)2+22]2 (443)
_ Rva  (2-3v)(x+a)?+(2+v)z?

Tez(r,o’Z) - “2(2_\)5 (X)1/2[(X+a)2+22]2 (44b)
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Equations (44) may be expressed in the standard form as

k
Tre(P,O,Z) = ~§— + 0(x°) (45a)
X
k3 o
Tez(r,o,z) = —E— + 0(x") (45b)
V2 X

The stress-intensity factors for the edge-sliding and tearing
modes of crack extension are expressed in terms of the non-

dimensional parameter z* = % through the relations

_ 4/2R Vv z*

ko = - 377 (o) Tz - (46a)
_ V2R 2v  1-z%2

kg = - ﬂ2a3/2(]+z*2) - 2-v T+z*7 (46b)

The variations of these equations with z* are shown in Figures

2 and 3 for various values of wv.

CLOSURE

The problem of determining stresses and displacements in
a three-dimensional elastic solid with a semi-infinite plane
crack is reduced to the finding of four distinct harmonic
functions. The surfaces of the crack are deformed by the ap-
plication of concentrated shears (R) parallel to the rectilin-
ear boundary as shown in Figure 1. The analysis reveals that
none of the Papkovich-Neuber potentials appearing in the gen-

eral solution of the equations of equilibrium can be neglected.

-19-



Indeed, all of the four functions are needed to satisfy the

appropriate boundary and regularity conditions in the problem.

Methods of integral transforms involving the Macdonald
function (the so-called Kontorovich-Lebedev transforms) as
well as singular solutions of Laplace's equation in three di-
mensions are employed. The results presented here coupled
with the solutions of Uflyand [4] complete the construction
of the Green's functions for the semi-infinite crack problem
and pave the way for immediate application in a number of

problems of interest in fracture mechanics.
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APPENDIX

The Kontorovich-Lebedev transform of a function ¢(x) is

defined by the formula

” s (X)dx (47)
where ¢(x) is assumed to be of class L? in the interval [0,~]

and Kit(x) is the Macdonald function which is a solution of

2

d 1d t 2

oty - (0 -=ly=0 (48)
Assuming that Qéﬁl-is continuously differentiable and x¢(x)
and x %7 [Qéil] are absolutely integrable in [0,»] then the
inverse of (47) is given by

o(x) = %7 &(t)Kit(x)tsinh(nt)dt (49)

O~ 8

Further details may be found in [4].
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Figure 1.

Semi-infinite plane crack in elastic solid.




Figure 2.

Variations of k2 along crack border.
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